If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14t^2-8t+1=0
a = 14; b = -8; c = +1;
Δ = b2-4ac
Δ = -82-4·14·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{2}}{2*14}=\frac{8-2\sqrt{2}}{28} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{2}}{2*14}=\frac{8+2\sqrt{2}}{28} $
| 56x^2-8x+1=0 | | 3y+8=2y+3 | | 61x^2-32x+4=0 | | (3)/(5)x=96 | | -m-2=-1 | | 3800=x+(0.03x) | | 3/5x=96 | | x+(0.03x)=3800 | | 2b+18=12 | | 10+y/3=1 | | X2+4x-30=0 | | 6/4x+4=3 | | x+2x-17=43+17 | | 5-7(x+3)=19x | | n(n^2-1)=50 | | t-9=2 | | x+4=1/8 | | 4(x+5)-6(x-1)=14 | | 2x+5=8x-10= | | 2a÷3=8 | | 5+3x/2x=4 | | 4/x+3+3/x-2=15/(x+3)(x-2) | | 5x+7/8+2x/x+5=x | | 1/2(6x+8)=5x | | 25/75=1/x | | 5/b=4/5 | | 3+6x=11+2x | | 4(x+2)/3=3x-5 | | h-179=426 | | 8x-(4x^2)+(40/3)=0 | | (2.72)^x=3.14 | | √2x-3=3 |